A logarithmic-quadratic proximal point scalarization method for multiobjective programming
نویسندگان
چکیده
We present a proximal point method to solve multiobjective problems based on the scalarization for maps. We build a family of a convex scalar strict representation of a convex map F with respect to the lexicographic order on R and we add a variant of the logarithmquadratic regularization of Auslender, where the unconstrained variables in the domain of F are introduced on the quadratic term and the constrained variables employed in the scalarization we put on the logarithmic term. We show that the central trajectory of the scalarized problem is bounded and converges to a weak Pareto of the multiobjective problem .
منابع مشابه
A Proximal Scalarization Method with Logarithm and Quasi Distance to Multiobjective Programming
Recently, Gregório and Oliveira developed a proximal point scalarization method (applied to multiobjective optimization problems) for an abstract strict scalar representation with a variant of the logarithmic-quadratic function of Auslender et al. as regularization. In this work we propose a variation of this method, taking into account the regularization with logarithm and quasi-distance, wher...
متن کاملInexact scalarization proximal methods for multiobjective quasiconvex minimization on Hadamard manifolds
In this paper we extend naturally the scalarization proximal point method to solve multiobjective unconstrained minimization problems, proposed by Apolinario et al.[1], from Euclidean spaces to Hadamard manifolds for locally Lipschitz and quasiconvex vector objective functions. Moreover, we present a convergence analysis, under some mild assumptions on the multiobjective function, for two inexa...
متن کاملA scalarization proximal point method for quasiconvex multiobjective minimization
In this paper we propose a scalarization proximal point method to solve multiobjective unconstrained minimization problems with locally Lipschitz and quasiconvex vector functions. We prove, under natural assumptions, that the sequence generated by the method is well defined and converges globally to a Pareto-Clarke critical point. Our method may be seen as an extension, for the non convex case,...
متن کاملConic Scalarization Method in Multiobjective Optimization and Relations with Other Scalarization Methods
The paper presents main features of the conic scalarization method in multiobjective optimization. The conic scalarization method guarantee to generate all proper efficient solutions and does not require any kind of cenvexity or boundedness conditions. In addition the preference and reference point information of the decision maker is taken into consideretion by this method. Also in this paper,...
متن کاملA general approach for studying duality in multiobjective optimization
A general duality framework in convex multiobjective optimization is established using the scalarization with K-strongly increasing functions and the conjugate duality for composed convex cone-constrained optimization problems. Other scalarizations used in the literature arise as particular cases and the general duality is specialized for some of them, namely linear scalarization, maximum(-line...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Global Optimization
دوره 49 شماره
صفحات -
تاریخ انتشار 2011